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a b s t r a c t

Climate variability affects both animal and plant populations. Understanding how this variability is
modulated by topography, vegetation and population densities and how this impact on ungulate
demography is an important step in order to forecast consequences of alternative management scenarios
or the effects of climate change.

Structural equation modeling (SEMs) is a tool particularly suited to this kind of situations, and allowed
us to study the direct and indirect effects of climate, topography, structural and functional aspects of
vegetation and population density upon reproductive performance of Patagonian sheep flocks, measured
at paddock scale. The application of SEMs in conjunctionwith information criteria and related techniques
for model selection, model averaging and multi-model inference revealed that despite considerable
model uncertainty, those paddocks towards the East, with a greater spatial variability in July tempera-
tures and greater primary production during fall-winter (estimated by remote sensing) showed greater
lambing rates. Paddocks with higher proportion of meadows and with more intense forage consumption,
were also associated with a better reproductive performance. Our results not only provide quantitative
hypothesis about the controls at the landscape level of herbivore performance but also provide the basis
to devise better management alternatives.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Climate variability affects both animal populations and vegeta-
tion (Benton et al., 1995; Tuljapurkar, 1989). The effective impact
of climate variability on herbivores is mediated by vegetation,
topography and population densities, which in turn determine the
environment experienced by individual animals. Understanding
this “climatological downscaling” (Pettorelli et al., 2005a,b) is
a fundamental step in order to understand the drivers of demog-
raphy and population dynamics and to forecast the consequences
of alternative management schemes or the effects of climate
change.
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Climate can have strong direct and indirect effects on herbivore
populations. On the one hand it exerts a direct control upon
herbivore vital rates, specially in sites with harsh winters
(Coronato, 1999; Catchpole et al., 2000; Pettorelli et al., 2005a,b;
Portier et al., 1998). On the other hand, climate affects the
seasonal dynamics and interannual variability of forage quantity
and quality (del Grosso et al., 2008; Epstein et al., 1997; Jobbágy
et al., 2002; Lauenroth and Sala, 1992; Paruelo et al., 1999;
Smoliak, 1986; Webb et al., 1978), affecting indirectly body
condition, growth, maturation, survival, fecundity and migration
patterns of wild and domestic herbivores (Coté and Festa-
Bianchet, 2001; Langvatn et al., 1996; Pettorelli et al., 2005a,b).

An approach specially suited to explore and contrast hypotheses
on causal relationships among variables, and to identify direct and
indirect effects with observational data are path analysis and
structural equation models (“SEMs”, Kline, 2011; Pugesek et al.,
2003). These approaches have received increased attention in
ecological studies (Almaraz, 2005; Iriondo et al., 2003; Malaeb
et al., 2000; Mysterud et al., 2008). In its broadest sense, SEMs

mailto:mtexeira@agro.uba.ar
mailto:baldi@unsl.edu.ar
mailto:paruelo@agro.uba.ar
www.sciencedirect.com/science/journal/01401963
http://www.elsevier.com/locate/jaridenv
http://dx.doi.org/10.1016/j.jaridenv.2012.01.017
http://dx.doi.org/10.1016/j.jaridenv.2012.01.017
http://dx.doi.org/10.1016/j.jaridenv.2012.01.017


M. Texeira et al. / Journal of Arid Environments 81 (2012) 26e34 27
translate a series of hypothesized causeeeffect relationships
among variables into a composite hypothesis concerning patterns
of statistical dependencies and correlations (Shipley, 2000).
These relationships are described by parameters that indicate the
magnitude of the effect (direct or indirect) that independent vari-
ables have on dependent variables. These variables can be manifest
(observed) or latent (unobserved, hypothetical or theoretical
constructs). The construction of a SEM model, implies that the
researcher has at least some knowledge about which variables are
assumed to affect other variables, and the direction (positive or
negative, unidirectional or bidirectional) of these effects. Depend-
ing on the amount and development of this prior knowledge, SEMs
can be applied in at least three ways or contexts (Pugesek et al.,
2003). First, in a strictly confirmatory application, the researcher
has a single model that is accepted or rejected based on its corre-
spondence to the data. Second, a somewhat less restrictive context,
concerns the testing of alternative models, and it refers to situa-
tions in which more than one a priori model is available. The last
way, is that of model generation. This is probably the most common
use, and occurs when an initial model does not fit the data, and is
subsequently modified until achieve an adequate fit. The modified
model is tested again with the same data. The final goal of this
search is to find an adequate model, i.e., one with theoretical sense,
parsimony and correspondence to the observed data (Kline, 2011).
Our use of SEMs falls somewhere between the second and third
contexts described, and is intended to establish causal assumptions
and generate a data grounded conceptual model of our study
system, the Patagonian sheep flocks.

Patagonia is a vast arid to semiarid region located in the
southernmost portion of South America (Ares et al., 1990; Soriano,
1983). Extensive grazing started there at the beginning of the 20th
century, with the introduction of the first sheep (Ovis aries) flocks
(Soriano, 1983), and now represent one of the most important
activities in the region. Since their introduction, sheep have relied
on the native vegetation as the sole source of forage and their
populations have beenmaintained in large paddocks (usually larger
than 2500 ha) by the internal replacement of ewes and weathers,
without forage or nutrient supplementation andminimum sanitary
and grazing regime management. The low management interven-
tion on the system determines that sheep flocks behave, to a great
extent, as semi-natural populations (Texeira and Paruelo, 2006).
More than a hundred of years of grazing by sheep, hampered the
ecological and economical sustainability of the Patagonian steppes
(Golluscio et al., 1998).

The lambing rate (percent of ewes giving birth to a live lamb)
represents a key indicator of the herd sustainability and persis-
tence. The actual lambing rate is not measured on ranches. In turn,
the effective lambing rate, the number of lambs alive at marking
(approximately 3 weeks after lambing) relative to the number
of ewes at marking, is the only measure of reproductive perfor-
mance of widespread use in Patagonia (Battro, 1992). This index
summarizes the genetic and environmental constraints on sheep
reproduction.

An understanding of the relationships among herbivore
demography, climate, vegetation and landscape is crucial in order
to provide basis for developing sustainable management alter-
natives for sheep husbandry in Patagonia. Moreover, the semi-
natural behaviour of sheep flocks make them an ideal system
to study how environmental factors interact in controlling
critical demographic parameters of herbivore populations. In
a previous work we showed that the temporal dynamics of
reproductive performance of sheep at ranch scale in Patagonia,
was associated to the onset of the growing season and the quality
and quantity of forage at mating (Hall and Paruelo, 2006; Texeira
et al., 2008).
In this article we aim to show the potential usefulness of
structural equation models in observational studies in which the
action of direct and indirect effects is very clear and the application
of methods likemultiple regression is inappropriate. The case study
is the evaluation of the direct and indirect effects of climate,
topography, vegetation structure and function, and population
density on the reproductive performance of semi-natural sheep
herds at paddock scale in northwest Patagonia, Argentina.

2. Methods

2.1. Study site

The study sites are located in the northwest of Patagonia, in
the so-called Occidental district (Soriano, 1956). The climate is
temperate or cool-temperate, with mean annual temperatures
ranging from 12 �C in the northeastern region to 3 �C in the
southwestern region (Paruelo et al., 1998a). The mean temperature
in the coldest month (July) is greater than 0 �C in all the extra
Andean Patagonia and falls toward the southwest, reaching
minimum absolute temperatures below�20 �C. The predominance
of strong “westerly winds” (Paruelo et al., 1998a) is a characteristic
of the Patagonian climate. Maximumwind speeds (15e22 km h�1)
occur between September and January and reduce the perception
of the mean annual temperature over the whole region by 4.2 �C
(wind chill factor, Coronato, 1993).

Precipitation shows a strong seasonal pattern, with most of the
precipitation falling during winter. From the Andes mountains
and eastward, total annual precipitation decreases exponentially
from 800 mm y�1 to 150 mm y�1 (Jobbagy et al., 1995). This
precipitation gradient determines profound changes in structural
and functional characteristics of the vegetation (Jobbagy et al.,
1995; Paruelo et al., 2004), e.g., aboveground net primary produc-
tivity (ANPP) decreases eastward from 900 kg y�1 to 390 kg y�1

(Paruelo et al., 1998b).

2.2. Effective lambing rates

The four ranches considered in this study are located in a strip
parallel to the Andes mountains (within a 22,000 km2 rectangle,
extending between 39� 350 S and 45� 400 S and from 70� 200 W to
71� 25 W, Fig. 1) that include the major climatic gradients of the
study area. These ranches cover thousands or even hundreds of
thousands of hectares, and share the same production structure
and management (Golluscio et al., 1998). These ranches were
selected, given the availability of spatially detailed records of
marking rates (i.e., at the scale of paddock).

The exclusive sheep breed is Merino. Both ewe andweathers are
shorn once a year (SeptembereNovember), mating takes place in
late fall (AprileMay) and lambing in early spring (October). Lambs
are weaned around February. Marking occurs in December and
effective lambing rate is calculated as the number of lambs relative
to the number of sheep at marking (Battro, 1992).

We selected paddocks with at least 3 years of effective lambing
rates data for the period 2000e2005. Mean area of the sixty six
paddocks that filled this criterion was 2840 ha, and ranged from
350 ha to 9800 ha. Effective lambing rate in each paddock and year
was calculated as the ratio between lambs and ewes at marking
(December). We then averaged these yearly marking rates, in order
to obtain mean values for the paddocks and period considered.

2.3. Surrogates of climate

Latitude and longitude were used as surrogates of mean annual
temperature (MAT) and mean annual precipitation (MAP), given



Fig. 1. Localization of study sites. The right panel show the maps of the ranches superimposed on a digital elevation model map (dem).
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the known northesouth temperature and westeeast precipitation
gradients (Jobbagy et al., 1995; Paruelo et al., 1998a).

2.4. Remotely sensed data

2.4.1. Topography
The topographic information was extracted from the “Shuttle

Radar TopographyMission” (SRTM) digital elevationmodels (DEM),
with a spatial resolution of 90 m (0.81 ha) (USGS, 2004). Three
topographic variables were considered in this study. The first
two, percentage of the paddock below 1000 m.a.s.l., and median
paddock altitude, were used as surrogates of air temperature and
snow cover. The last one, aspect, is related with air temperature and
wind intensity. For this variable we defined four categories:
Northwest (NW), Northeast (NE), Southwest (SW) and Southeast
(SE). The best conditions for sheep correspond to the NE exposed
hillsides which are “protected” from strong westerly winds and are
more exposed to sunlight across the year. Intermediate situations
are found in the NW and SE hillsides whereas the worst situations
correspond to the SW (where the weather is windier and colder).

2.4.2. Vegetation structure and physiognomy
Land cover characterization data was extracted from Paruelo

et al. (2004). These authors performed a supervised classification
of a mosaic of four Landsat 5 TM scenes (WRS2 path 231, rows
88e91) corresponding to 30th December 1997. Nine physiognomic
types were identified: forests, scrublands, prairies (meadows),
grass steppes, grass-shrub steppes, shrub-grass steppes, shrub
steppes, semideserts and ‘low-covered’ grass steppes, plus two
barren land covers: snow & rocks and water bodies. For each
paddock, we quantified landscape composition through the calcu-
lation of three metrics: area of prairies, percentage of paddock
covered by prairies and physiognomic type richness. For the first
step in their quantification we slightly modified the classification
with a 7 � 7 pixel moving window majority filter in order to
eliminate the ‘‘salt and pepper’’ appearance. Then, we vectorized
this map and intersected it with the paddock limits. Polygons
smaller than 0.36 ha (four Landsat pixels) were eliminated because
they would not represent pure grassland polygons.

The first metric was defined as the sum of the area of all the
prairie polygons, and it is related to the main forage source (prai-
ries). The second one was defined as the area of prairies relative to
the total area of the paddock, and it represents the relative quality
of the paddock in terms of forage. This variable was transformed to
arcsin (Ox), previous to all the analyses. The last metric was
calculated as the sum of all the physiognomic types found in the
paddock (minimum 1 and maximum 11), and was related to the
diversity of different resources in space (food, protection, etc.).

2.4.3. Vegetation functioning and phenology
We characterized the vegetation functioning through the anal-

ysis of the “enhanced vegetation index” (EVI) temporal series for
the period 2000e2005, obtained from the MODIS-TERRA imagery
(MODIS 13Q1 product). The enhanced vegetation index (EVI) is
a surrogate of aboveground net primary production (ANPP) which
in turn is the main determinant of forage availability (Oesterheld
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et al., 1992, 1998; Paruelo et al., 1999). This spectral index was
developed to optimize the vegetation signal with improved sensi-
tivity in high biomass regions and improved vegetation monitoring
through a de-coupling of the canopy background signal and
a reduction in atmosphere influences (Huete et al., 1994, 1997,
2002). The equation takes the form

EVI ¼ G$
rNIR � rred

rNIR þ C1$rred � C2$rblue þ L

where r are atmospherically corrected or partially atmosphere
corrected (Rayleigh and ozone absorption) surface reflectances, L
is the canopy background adjustment that addresses nonlinear,
differential NIR and red radiant transfer through a canopy, and
C1 and C2 are the coefficients of the aerosol resistance term,
which uses the blue band to correct for aerosol influences in the
red band (Huete et al., 1994, 1997, 2002). MODIS spectral infor-
mation was filtered based on the quality flags of each pixel. We
considered four factors to perform the filtering: 1) low quantity of
aerosols, 2) no cloud cover, 3) no ice or snow cover and 4) no
shadows.

For each paddock, we calculated the average EVI for the most
relevant periods of the reproductive cycle of Patagonian sheep:
around mating (from April to June) and around the onset of
growing season and lambing (from July to November). Because we
had several monthly EVI values, we also performed a principal
component analysis to obtain a synthetic measure of vegetation
functioning for each key period.

2.4.4. Surface temperatures
As air temperature was not available, we characterized

land surface temperature (LST) through the MODIS 11A2 product
(http://edcdaac.usgs.gov/modis/mod11a2v4.asp) (Wan and Li,
1997; Wan et al., 2002, 2004). LST is defined by the radiation
emitted by the land surface observed by MODIS at instant viewing
angles (Wan et al., 2004). Mean monthly values for the coldest
months (from June to November) were calculated for each 1�1 km
pixel ignoring pixels contaminated by clouds or LST average
error >1 �K, using the quality control flags. We also characterized
the temporal variability in the mean monthly LST in two different
ways. First, we calculated the inter-annual standard deviation of
the monthly means. Second, we calculated the mean of the inter-
pixel standard deviation for each month and paddock. In order
to obtain a measure that synthesized thermal environment, we
performed principal component analysis with mean monthly
temperatures and variability measures.

2.4.5. Harvest index
As an indirect measure of density dependent effects on repro-

ductive performance, we estimated the mean harvest index
(Golluscio et al., 1998) during the period for each paddock. Harvest
index was calculated as the quotient between consumption and
forage availability, assumed to be equal to aboveground net
primary production (ANPP):

HI ¼ Consumption
ANPP

Consumption was estimated as

Consumption ¼ S� Do� InI
area

where Smeans stocking (number of animals), Do number of days of
paddock occupation and InI individual daily forage intake. We
assumed an individual daily dry matter intake of 3% of sheep live
weight. We assumed live weights between 25 kg and 50 kg,
depending on the sex, age and physiological status of sheep occu-
pying the paddocks.

Forage availability was assumed equal to aboveground net
primary production (ANPP), and was estimated from Monteith
model (Monteith, 1981)

ANPP ¼ εa �
Z

APAR

where εa is the energy conversion coefficient (in g/MJ month) and
APAR is the absorbed photosynthetically active radiation. The
integral was calculated over the year and considering monthly
intervals. APAR was obtained multiplying the fraction of photo-
synthetically active radiation absorbed by green vegetation (FPARg)
by the incoming photosynthetically active radiation (PAR). In order
to estimate ANPP, we assumed a linear relationship between EVI
and FPARg (Piñeiro et al., 2006). Energy conversion coefficient
values were obtained from Paruelo et al. (2004) and Irisarri et al.
(2012). Mean monthly values of PAR were obtained from Esquel
airport (�42.91� S, �71.15� W), for the period 1995e2005.
2.5. Statistical analyses

Structural equation modeling (SEM) is a powerful set of tools
specially suited to study hypothesized causal relationships among
variables when using observational data. This fact makes SEMs
particularly relevant for ecology and natural resource management,
disciplines inwhich experimental control andmanipulation are not
always feasible or ethical. Another feature of SEMs is the capability
to model direct and indirect effects acting upon a focal variable or
group of focal variables. Graham (2003) recommended the use of
SEMs as one of the best alternatives for overcoming the problem of
multicollinearity in multiple regression. In our case the use of
multiple regression is not appropriate given the presence of strong
correlations among the independent variables and the presence of
direct and indirect effects acting upon the dependent variables.

In this kind of statistical model the user generates a path
diagram that represents the causal relationships and correlations
among the variables presumed to be important for the system or
phenomenon under study. These relationships should be based on
prior knowledge, generally grounded on theory, previous experi-
ence, or a combination of both (Iriondo et al., 2003; Malaeb et al.,
2000). Our conceptual diagram is depicted in Fig. 2, and arose
from previous studies and knowledge acquired from more than
a century of sheep husbandry in Patagonia (Golluscio et al., 1998;
Hall and Paruelo 2006; Olaechea et al., 1981, 1983; Texeira and
Paruelo, 2006; Texeira et al., 2008).

The fundamental null hypothesis to be tested in SEMs is that
the covariance (or correlation) matrix of the observed variables is
consistent with the covariance (or correlation) matrix associated
with the model’s path diagram. Thus, SEM fitting methods mini-
mize the differences between the observed covariances and the
covariances predicted by the model (Pugesek et al., 2003).

Because we had different indicators of thermal environment,
topography, and vegetation variables we tested themodel structure
in Fig. 2, but with different indicator variables in each box (Table 1).
We applied this methodology instead of structural equationmodels
with latent variables given the low sample size (n¼ 66). Previous to
the analyses all continuous variables were standardised.

We used three criteria for model selection (Fox, 2006; Malaeb
et al., 2000). First, we used the probability associated to model
Chi square statistic. This probability indicates the strength of the
evidence in favour of the null hypothesis, i.e., that the observed
covariance structure is consistent with the one assumed in the
model. Thus, we looked for models with non significant Chi square

http://edcdaac.usgs.gov/modis/mod11a2v4.asp


Fig. 2. Conceptual model of the controls of effective lambing rate (ELR). Dashed boxes represent constructs where different indicator variables were tried. Gray boxes represent
external variables (analogous to independent variables in multiple regression). “HI” means harvest index.
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p-values. Once we identified the set of models with non significant
Chi square p-values, we inspected the second criterium, the
Bayesian information criterion (BIC). BIC penalizes the likelihood-
ratio chi-square statistic for the number of parameters in the
model, the number of observed variables, and the sample size.
Models with greater support from the data have in general more
negative values of BIC. Based on BIC we compared the models
adjusted, in order to measure how much better the best approxi-
mating model is compared with the next best models. The simplest
way of doing this is to calculate the difference (ΔBICi) between the
BIC value of the best model and the BIC value for each of the
other models. Values of ΔBICi <2, represents a substantial level of
empirical support of model i (Burnham and Anderson, 2002).
Increasing differences in ΔBICi represents decreasing levels of
empirical support of the models. ΔBICi can be used to calculate
Table 1
Construct variables and indicators used in the structural equation models of effec-
tive lambing rate.

Construct Indicators

Topography - Median altitude
eAspect
- % of paddock below 1000 m.a.s.l.

Thermal environment - Mean monthly land surface temperature
(from June to November)
- Inter annual variability (SD) of monthly mean
temperatures
- Mean of inter-pixel monthly temperature
variability (SD)
- First two axis of PCA of mean monthly temperatures
and variability measures

Vegetation structure - Functional Type richness
- area covered by prairies
- percentage of paddock area covered by prairies

Vegetation at mating - Monthly EVI from April to June
- Mean of monthly EVI values from April to June
(EVI Fall-Winter)
- First axis of PCA of EVI values from April to June
- Mean integral of EVI in mating paddocks

Vegetation at lambing - Mean of monthly EVI from July to December
- Mean of monthly EVI values from July to December
- First axis of PCA of EVI values from July to December
- Mean integral of EVI in lambing paddocks
two additional measures to asses the relative strengths of each
candidate model. The first of these is the evidence ratio (Burnham
and Anderson, 2002) which provides a measure of howmuchmore
likely the best model is than model i. The secondmeasure is the BIC
weightwi. BIC weights take values between 0 and 1, with the sum of
weights of all models in the candidate set equal to 1. This measure
could be interpreted as the probability that a given model is the
best approximatingmodel. BIC weights can also be used to estimate
the relative importance (RI) of variables under consideration across
all the models in the candidate set. This is done by summing the BIC
weight for each model inwhich the focal variable appears (Johnson
and Omland, 2004).

The third criterion was the root mean square error approxima-
tion (RMSEA), which is an estimate of goodness of fit, relative to the
saturated model. In general values of RMSEA �0.05 are indicating
a good fit to the model. Given the small sample size and the fact
that some variables exhibited skewed distributions, the signifi-
cance of the estimators in the final model selected, was assessed by
means of non-parametric bias corrected bootstrap with 2000
bootstrap replicates (Almaraz, 2005).

All analyses were performed in R v 2.8.1 (R Development Core
Team, 2008) using the package sem (Fox, 2006).
3. Results

Neither of the models that included topography as an external
construct showed adequate fits, and consequently, we removed it.
Moreover, only models considering percentage of meadows as
indicator of vegetation structure were adequate in terms of Chi
square statistic probabilities. The best five models, in terms of the
criteria considered, all contained percentage of meadows as indi-
cator of vegetation structure and EVI in July as indicator of vege-
tation functioning around lambing (Table 2). Thermal environment
was characterized in these models by means of mean inter pixel
variability in July or interannual variability of mean monthly
temperature in June. Vegetation around mating was characterized
by EVI in April, EVI in June or EVI during Fall-Winter. As none of the
first four models in Table 2 showed differences in BIC greater than
two, neither of them could be considered superior in terms of fit to



Table 2
The best five models fitted. The first four columns represents the model rank and the indicators and the last six columns represents the fitting criteria: p-value stands for Chi
square statistic p-value, RMSEA is the root mean square error approximation, BIC is the Bayesian information criterion, DBICi is the difference between the BIC of model i and
the best fitting model. ER represents de evidence ratio, and BICw is the BIC weight. IaV stands for interannual variability of mean monthly temperature, IpV is the mean of inter
pixel variability in each month and paddock.

Model rank Thermal environment Vegetation at mating Vegetation at lambing p-value RMSEA BIC ΔBICi ER BICw

(1) IpV July EVI Fall-Winter EVI July 0.816 0 �46.054 0 1 0.124
(2) IpV July EVI April EVI July 0.808 0 �45.946 0.108 1.056 0.118
(3) June IaV EVI Fall-Winter EVI July 0.783 0 �45.594 0.460 1.259 0.099
(4) June IaV EVI April EVI July 0.783 0 �45.594 0.461 1.259 0.099
(5) IpV July EVI June EVI July 0.652 0 �43.96 2094 2.848 0.044
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the data. Additionally evidence ratios and BIC weights, show that
the second, third and fourth models are almost equally likely that
the “best” model (ER values around 1 and BIC weights around 0.1
for thesemodels, Table 2). These results imply a considerablemodel
uncertainty. However, when we inspected the relative importance
of variables across all models, mean inter pixel temperature vari-
ability in July, EVI in July and EVI in Fall-Winter, were the
most important indicator variables of thermal environment, vege-
tation around lambing and vegetation around mating respectively
(Fig. 3).
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Fig. 3. Relative importance (RI, see methods) of the indicator variables of (a) thermal
environment, (b) vegetation around lambing and (c) vegetation around mating. The
dark bar in each graph, represent the most important indicator variable. The x axis
represents months: from June (J) to November (N) and first two principal components
(see methods) for (a), from July (Jl) to December (D), Spring-Summer means (SeS) and
first principal component for (b) and from April (A) to June (J), Fall e Winter mean
(FeW) and first principal component for (c).
For this reason and given the similarities among the best five
models, we discuss the results referring to the first model in Table 2.
This model included as significant explanatory variables, longitude,
the spatial variability of mean July temperature, percentage of
paddock covered by prairies, harvest index, EVI in July and mean
EVI in Fall-Winter. (Fig. 4, Table 3) (BIC ¼ �46.054, p ¼ 0.816,
RMSEA ¼ 0). Longitude, a surrogate of mean annual precipitation,
exhibited a double effect on effective lambing rate: a direct positive
effect and indirect negative effect mediated by the spatial vari-
ability of mean July temperature. The spatial variability of mean
July temperature was correlated positively with ELR. Percentage of
the paddock covered by prairies, had an indirect positive effect
through harvest index. This means that forage consumption was
greater in paddocks with greater percentage of meadows. On the
other hand, ELR was greater in paddocks in which forage
consumption (as estimated by HI) was intense. The positive rela-
tionship between harvest index and effective lambing rates, seems
to contradict the expected density dependent pattern, i.e., a nega-
tive relation between harvest index and lambing rates. However, if
we consider the relationship between harvest index and above-
ground net primary production derived by Golluscio et al. (1998)
from the findings of Oesterheld et al. (1992) for grassland ecosys-
tems, this apparent contradiction could be in part explained. This
relationship show that the rate of increase of the HI with ANPP,
decreases with ANPP. As the ANPP gradient is associated with
a precipitation gradient (Sala et al., 1988), the increase in HI with
ANPP, reflect an increase in precipitation that would be associated
to changes in drinking water availability and/or forage quality
Fig. 4. Best model fitted. Filled arrows represent positive effects and dashed arrows
represent negative effects. Light gray arrows and boxes represent non-significant terms
and variables. Little arrows from nowhere represent error terms. “ELR” stands for
effective lambing rate, “T jul DS” means spatial variability of mean July temperature,
“HI” means harvest index, “EVI FW” represents mean EVI during fall-winter.



Table 3
Estimates of the best model fitted. Significant terms are highlighted in bold. S.E.
stands for standard error, Lower and Upper are the lower limit and the upper limit of
the 95% bias corrected bootstrap confidence interval.

Coefficient Estimate S.E. Lower Upper

Latitude / temperature �0.1675 0.1616 �0.4693 0.1462
Longitude / temperature �0.4089 0.1616 �0.6955 �0.1349
Longitude / % meadows �0.1630 0.1224 �0.4311 0.0703
Longitude / EVI July 0.0056 0.1245 �0.3631 0.3334
Longitude / EVI fall-winter 0.2068 0.1227 �0.5547 0.1346
Longitude / E.L.R. 0.5962 0.1306 0.3695 0.8392
Temperature / harvest index 0.0547 0.0961 �0.1299 0.2898
Temperature / E.L.R. 0.3688 0.1243 0.1589 0.5692
% meadows / EVI July 0.1397 0.1245 �0.1220 0.3717
% meadows / EVI fall-winter 0.0412 0.1227 �0.2432 0.3166
% meadows / harvest index 0.5756 0.0947 0.2156 0.8514
EVI July 4 EVI fall-winter 0.7540 0.1520 0.5531 0.8713
EVI July / harvest index 0.0882 0.1464 �0.3133 0.4580
EVI July / E.L.R. �0.4007 0.1692 �0.7732 �0.0410
EVI fall-winter / harvest index �0.4201 0.1476 �0.8057 0.0074
EVI fall-winter / E.L.R. 0.5464 0.1823 0.1132 0.9917
Harvest index / E.L.R. 0.2741 0.1142 0.0387 0.5251

Fig. 6. Observed vs. model predicted graphs of standardised harvest index (a) and
standardised effective lambing rate (b). Coefficients of determination between
observed values and model predicted ones are shown in each graph. Filled lines
represents observed versus predicted regressions whereas dashed lines represent 1:1
line. “ELR” stands for effective lambing rate and “HI” means harvest index.
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(Milchunas et al., 1988). The change of both drinking water and
forage nutritive quality is greater in the arid extreme of the gradient
than on the humid one. Fig. 5 shows the harvest index predicted by
the ANPP model and the harvest index observed in the paddocks
considered in this study. According to the differences between
observed and model predicted HI, we can infer that most of the
paddocks have experienced harvest intensities below those ex-
pected according to the paddock’s ANPP. This could explain why
density dependent effects on effective lambing rates were not
found, and could point to a sub-utilization of these paddocks.

The quantity and quality of forage around mating (represented
bymean EVI during fall-winter, EVI FW) had a direct positive effect,
whereas forage around growing season onset e lambing (EVI July)
had a negative direct effect. As expected these two variables
exhibited a strong positive correlation. Fig. 6 show the observed
ELR vs model predicted ELR for the harvest index and for the
effective lambing rate. The regression lines showed in the graphs
are not statistically different from the 1:1 line.

4. Discussion

Our analysis shows that paddocks towards the East, with
a greater spatial variability of July or interannual variability of
June temperature and greenness index during fall-winter showed
greater mean effective lambing rates. Moreover, paddocks in
which forage consumption have been intense (with higher HI),
lambing have been greater. Moreover, harvest index, measured as
Fig. 5. Observed harvest indexes (dots) and harvest indexes predicted from ANPP
(line). This model states that HI ¼ �5.71 þ 0.7154$(PPNA)0.5. (Oesterheld et al., 1992;
Golluscio et al., 1998).
a percentage of ANPP, was greater in paddocks with greater
percentage of the area covered with prairies.

The direct positive effect of longitude could be interpreted at
least in two ways. First as a negative effect of annual ANPP, given
the strong east-west ANPP precipitation driven gradient (Jobbagy
et al., 1995; Paruelo et al., 1998a). The second interpretation
could be associated to the effects of mean annual temperatures, as
paddocks towards theWest are higher and thus exhibit lowermean
annual temperatures, and are more prone to snowfall during
winter. The spatial variability of mean July temperature was
correlated positively with ELR; this could be associated to the
availability of “thermal refuges” for sheep in the coldest month.
Jobbágy et al. (2002), found that the beginning of the growing
season was associated to mean July temperature and can occur in
July. Then a more spatially variable July temperature, could be
associated with a spatially heterogeneous growing season start,
and thus an heterogeneous forage source, offer and availability.
Spatially heterogeneous plant phenology leads to a prolonged
period with high quality forage, as young plants have higher
nutritional value and N concentrations and low lignin contents
(Demment and van Soest, 1985). Somlo et al. (1985) have showed
this for Patagonian grass and shrub steppe species.

The positive effect of vegetation greenness during fall-winter,
points to the importance of foraging conditions around mating.
Several authors have shown an association between nutritional
status and ovulation rates in sheep and red deer (Gonzalez et al.,
1997; Gunn et al., 1969; Langvatn et al., 1996; Russel, 1971).
Higher EVI during fall e winter, could be thus associated to better
nutritional status of ewe at mating and thus higher probabilities of
ovulation and conception.

According to our results, mean EVI in July is associated to lower
mean effective lambing rates. Although higher EVI in July could
have a positive effect on nutritional status of pregnant ewe, it could
determine an earlier growing season end, and as a consequence
lower quality forage during lactation. This line or reasoning stems
from the fact that the length of the growing season is constant, in
particular in sites with mean annual temperatures above 3e4 �C
(Jobbágy et al. 2002). This is the case for the northwest portion
of Patagonia, the region in which the ranches of our study
are located. This could translate into higher lamb mortality in
NovembereDecember, and thus in lower effective lambing rates.

Our results have two important implications. On the one hand,
provide quantitative hypothesis about the controls at the landscape
level of herbivore reproductive performance, by relating by means
of appropriate techniques (i.e., SEMs), topography, climate and
vegetation. The application of multiple regression models to this
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situation could be misleading, and could not allow us to establish
causal assumptions (those associated to the diagram in Fig. 4), as
a consequence of incorrect estimation of standard errors and
significance levels (Graham 2003; Kline, 2011). In spite of the low
predictive ability of the fitted model, we consider that the
approximation could serve as a guide for further, refined explora-
tions. Consideration of model uncertainty (by means of BIC weights
and relative importance of variables across the entire candidate
models set) showed that certain variables consistently appear in
the “best” fit models. It also provides statistically sound evidences
and thus potential advice for a better management of sheep flocks
in arid and semi-arid rangelands.
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